统计分析应建立在真实、可靠、准确、完整的数据基础上,采用的统计方法应根据研究目的、试验方案和观察指标来选择,一般可概括为以下几个方面:
1.描述性统计分析
一般多用于人口学资料、基线资料和安全性资料,包括对主要指标和次要指标的统计描述。
2.参数估计、置信区间和假设检验
参数估计、置信区间和假设检验是对主要指标及次要指标进行评价和估计的必不可少的手段。假设检验应说明所采用的是单侧还是双侧检验,如果采用单侧检验,应说明理由。单侧检验的I类错误概率往往选择为双侧检验的一半,以保证单双侧检验的逻辑性。主要指标效应分析要说明采用的是固定效应模型还是随机效应模型。统计分析方法的选择要注意考虑指标的性质及数据分布的特性。无论采用参数方法或非参数方法,处理效应的估计应尽量给出效应大小、置信区间和假设检验结果。除主要指标和次要指标外,其他指标的分析以及安全性数据的分析也应简要说明所采用的方法。在确证性试验中,只有方案或统计分析计划中事先规定的统计分析才可以作为确证性证据的依据,而其他的分析只能视作探索性的。
3.基线与协变量分析
评价药物有效性的主要指标除受药物作用之外,常常还有其他因素的影响,如受试者的基线情况、不同治疗中心受试者之间差异等因素,这些因素在统计分析中可作为协变量处理。在试验前应认真考虑可能对主要指标有重要影响的协变量以及采用的可以提高估计精度的方法(如采用协方差分析方法),补偿处理组间由于协变量不均衡所产生的影响。对于确证性分析,应事先在方案中规定在统计模型中校正的协变量,以及校正的依据。当采用分层随机时,分层因素应作为协变量进行校正。对于事先没有规定校正的协变量,通常不应进行校正。也可以采用敏感性分析方法,将校正后的结果作为参考,而不应该取代事先规定的分析模型。
4.中心效应
多中心临床试验中,不同中心在受试者基线特征、临床实践等方面可能存在差异,导致不同中心间的效应不尽相同,这种中心之间的效应差异称为中心效应。常见三种情况:(1)无中心效应,即各中心试验组效应同质,对照组效应亦同质,此时各中心间效应是一致的;(2)有中心效应,但中心与处理组间不存在交互作用,即各中心试验组与对照组效应之差是同质的;(3)有中心效应,且中心与处理组间存在交互作用,此时,各中心试验组与对照组效应之差是异质的。中心与处理组间的交互作用,又分为定量的交互作用(各中心试验组与对照组效应之差方向一致)和定性的交互作用(至少一个中心的处理组与对照组的效应之差与其他中心方向不一致)。
分析主效应时,对于情况(1),模型中应不包括中心效应;对于情况(2),模型中可包括中心项,但不包含中心与处理的交互项效应以提高检验效能;对于情况(3),若存在定量交互作用,则需要采用合适的统计学方法来估计处理效应,以保证结果的稳健性,结果解释时须非常谨慎,应努力从试验的管理、受试者的基线特征、临床实践等方面寻找原因;当存在定性的交互作用时,需找到合理的解释并重新进行的临床试验。
当中心数较多,或每个中心样本数均较少,一般无需考虑中心效应对主要变量及次要变量的影响,因为此时中心效应不会影响临床效果。采用何种策略分析中心效应需事先在试验方案或统计分析计划中阐明。
5.亚组分析
临床试验中的亚组分析是对整体中根据某种因素分层的部分数据进行分析。
试验药物的疗效或安全性在不同的亚组中可能不同,而且这种差异往往具有特殊的临床意义。除非在方案设计时考虑到了计划的亚组分析,并且在样本量计算和多重性比较等方面事先给予了考虑,这样的亚组分析结果才能够被接受。由于亚组分析通常是小样本,且未按亚组随机化,故对于非确证性亚组分析的解释应当慎重,通常只能作为探索性研究的参考。
6.多重性问题
多重性问题是指在临床试验中,由于存在多个主要指标、多个比较组、多个时间点的比较、期中分析、亚组分析、多个分析集等情况,进行多次假设检验而导致Ⅰ类错误概率增加的现象。如果试验将重要的次要指标结果也纳入关键性证据的情况下,即主要指标和重要次要指标共存时的假设检验亦需要考虑多重性问题。对于主要指标是复合指标的试验,如果宣称的疗效是基于复合指标中某个或某些成分时,需事先定义这些成分并纳入多重性考虑的确证性分析策略。
将假阳性率控制在事先设定的水平以内是非常重要的原则,在确证性临床试验结果的评价中具有重要的意义。在试验方案或统计分析计划中应预先说明对多重性问题的考虑、控制Ⅰ类错误概率的原因及方法。处理多重性问题的方法有多种,如单步法、闭合检验程序、固定顺序的检验、序贯结构的策略等,在选择方法时可考虑将能够估计出疗效的可信区间作为选择的一个标准。
在对Ⅰ类错误概率进行控制的同时可能会导致Ⅱ类错误概率的增加,在估计样本量时应有所考虑。